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A simple numerical method is proposed for the calculation of radiative heat t ransfe r  in diffuse 
nonisothermal cavities. Numerical results  are  given for a parabolic temperature  distribution 
along the length of a cylindrical cavity. 

In determining the temperature  of solids by means of radiation, it is necessary  in many cases to use 
an open artificial  cavity bounded by the surface of a c i rcular  cylinder and by a fiat bottom. In pract ice,  
such a cavity has some kind of nonisothermality. However, even in the most basic work on the theoretical  
investigation of the radiation character is t ics  of such cavities [1], it is assumed the cavity walls are  at a 
constant tempera ture .  An attempt is made here based on integral equations [2] to obtain a general expres-  
sion suitable for numerical  computer calculation of the distribution of the effective monochromatic emittance 
eeff over the  surface of a cavity for a rb i t ra ry  nonisothermality of the walls. 

This study is an extension of previous work [3, 4]. 

It is assumed the surface of the cavity radiates and ref lects  diffusely and the polarization of the radi-  
ated energy is suppressed in the process  of multiple reflection. The temperature  of the bottom of the 
cavity is constant at all points and the tempera ture  field of the lateral  surface is axisymmetr ic .  The mono- 
chromatic emmissivity of the material  from which the cavity is made is independent of tempera ture .  The 
radiation field is stationary. 

As is well known (for example, see [5]), pyrometer  radiation readings are  proportional to the effec- 
tive brightness Ieffof the sighting point in the sighting direction. In turn,  the effective brightness is made 
up of the brightness of the intrinsic radiation, I i, and of the reflected radiation, i . e . ,  is determined both 
by the intrinsic radiation and by the entire family of rays which are  incident on the sighting area  and which 
are  reHected in the sighting direction (for brevity, the subscript k for the wave length of the radiation is 
omitted here  and in the following). 

Since, under our assumptions, the surface of the cavity emits and ref lects  diffusely, it is convenient 
to use not the brightness I but a quantity proportional to it -- the surface density of hemispheric radiation 
E.  In setting up the equations, all geometric character is t ics  are  normalized to the radius of the bottom 
of the cavity. 

The basic equations describe the thermal  balance for an arbi t rar i ly  selected elementary area dF. 
The elementary strip of area dFa(v)with the coordinate ~? (the origin of the coordinate system is at the 
center of the bottom of the cavity) radiates Eef f (V)dFa(~?) in all directions.  The amount of radiated energy 
incident on the elementary area dF (~ 0) with the coordinate 70 is proportional to the angular coefficient 
d ~ ,  ~?o) under which the elementary strip "sees" the elementary area dF~0) or, taking reversibi l i ty  into 
account, Eeff(~)d~ (~?,~?0)dFa(U)- Eeff(~?)d~ (Vi,v)dF(v0)- Thenthe amount of energy reflected by the elemen- 
t a ry  area  dF~0) is Rtq0)Eeff(~)d~ (~0,v)dF~?0). Inclusion of the contribution from all elementary strips of 
~he lateral  surface of the cavity is accomplished by integration over the range from 0 to ~L (rtL i s  the dimen- 
sionless depth of the cavity). Similarly, the radiation incident from the bottom surface and reflected by the 

1 

element dF{Y0) is R~0)j Eeff(~)dr ~)dF6?0), where the angular coefficient d~(%,~) is considered with 
0 
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TABLE 1. Dependence of eeff, X (~) on the Parameters  e~,, a , T  0?L 
= 8, X = 0.65/~m) 

f l l  8~, o~ T, ~ 0 0,2 0,4 0,6 0,8 0,9 0,95 0,97 1,0 

0,5 

0,6 

0,7 

0,75 

0,8 

0,9 

0,1 
o,l 

0,1 
0,1 
o,1 

0,3 
0,3 
0,1 
0,1 
o,1 

0,3 
0,3 
0,3 
0,1 
0,1 
o,1 

0,3 
0,3 
0,I 
0,1 
o,1 

0,5 
0,5 
0,3 
0,3 
0,3 

0 ,3  
0,2 
0,2 
0,2 
0,1 
0,1 
o,1 

1000 
3000 

0,9275 0,9436 
0,9635 0,9700 
0,9880 0,9885 
0,9880* 0,9887* 

0,9606 
0,9738 
0,9792 
0,9921 

0,9506 
0,9724 
0,9731 
0,9822 
0,9859 
0,9947 

0,9603 
0,9719 
0,9779 
0,9785 
0,9856 
0,9887 
0,9957 
0~0961" 

0,9693 
0,9830 
0,9834 
0,9889 
0,9913 
0,9967 

0,9816 
0,9866 
0,989/ 
0,9855 
0,9899 
0,9920 
0,9883 
0,9921 
0,9938 
0,9922 
0,9948 
0,9959 
0,9984 
0,9986* 

,Data from [1]. 

re spec t  to  dF(~0) and the e l ementary  r ing of d i m e n s i o n l e s s  radius  ~ .  Denoting the surface  density of e f f e c -  
t ive  radiat ion at the point 70 by Eeff070) and sett ing up the thermal  balance,  we  obtain 

Eoff(%) dF (no) --  Ec (no) dF (no) + R (no) [dF (no) .f EeffO1) 
o (1) ! 

• d~ (no, n) + dF (no) ~ e~ff(~) d,p (no, ~)] 
o 

or  in d i m e n s i o n l e s s  f o r m  after  e l ementary  t r a n s f o r m a t i o n s  

~eff(%) = ~ (no) @ R (no) [ .! ~eff(n) h (rl) KI (no, ~1) d~l 
o 

.1 

+ h (no) .I ~ff(~) K~ (no, ~) e l i .  (2) 
o 

S imi lar ly ,  for  an e l e m e n t a r y  area  on t h e b o t t o m  surface  we have 
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% 

%ff(~o) = ~ (~o) + R (~o) j" %ff(n) [~ (~) K~ (~o, n) d~. (3) 
0 

Values of e, R, and K and the t e m p e r a t u r e  functions f a re  given. The effect ive emiss iv i t i es  aef f a re  un-  
known functions.  Thus Eqs .  (2) and (3) fo rm a sys tem of two Fredho lm integral  equations of the second 
kind in two unknowns. This equation sys tem is valid fo r  monochromat ic  radiat ion and also for  the case  
where  the emitt ing sur face  is  " g r e y , "  

Since the purpose  of the p resen t  work is  simulation of a black body by a nonisothermal  cavity,  a 
r a t h e r  deep cavity was considered ,  the d imensionless  length of which was ~?L = 8. It was assumed that the 
t e m p e r a t u r e  fell  in the direct ion of the opening in accordance  with the quadrat ic  parabola  T0?) = T(0) ( 1 - a  
~?/r Values of the monochromat ic  emiss iv i ty ,  of the nonisothermal i ty  coefficient  a = (T(0)--T(~ L) ) /T  
(0), and of the t e m p e r a t u r e  of the bottom of the cavi ty  a re  given in Table 1 together  with the calculated 
data.  Fo rmulas  for  K a re  given in Appendix A. The t e m p e r a t u r e  functions f were  obtained w i t h i n t h e l i m i t s  
of applicabil i ty of the Wien formula  and a re  given in Appendix B. Since the effect ive wavelength of optical 
p y r o m e t e r s  is usual ly  0.65/~m, the calculat ions assumed X = 0.65 t~m and c 2 = 14380/~m-deg. 

The ke rne l s  K of Eqs .  (2) and (3) have a weak singulari ty when~0-~.l, V --~0, ~?0-~ and when ~ ~ 0 ,  
- - 1 .  Unfor~nately9 this  fact  was not mentioned in [1], which led to a fa i lure  in the numer ica l  solution 

[6] of such a sys tem of equations in accordance  with the scheme given in [1]. To weaken the s ingular i t ies  
he r e ,  a method was used [7] where the integrand is wri t ten in the fo rm of a sum of two functions with one 
of them containing the "en t i re"  s ingulari ty lint being exactly integrable  and the other  without a s ingular i ty  
calculable to any given accu racy  by one of the formulas  fo r  approximate  quadra tu res .  A convers ion of the 
in tegra ls  in Eqs .  (2) and (3) was ca r r i ed  out in accordance  with th is .  It was found that it  was m o re  con-  
venient  not to de te rmine  the original  in tegra ls  d i rec t ly  but to calculate the i r  exact  values on the basis  of 
the c losure  pr inciple  and r eve r s ib i l i t y  fo r  the angular  coefficients  9% The appropr ia te  fo rmulas  were  ob-  
tained by different ia t ion of the express ion  M, where M is the angular coefficient  between two c i r c l e s  of 
equal radius  located in para l le l  planes and having a common centra l  normal  [8] {the fo rmulas  fo r  the an-  
gular  coeff icients  and the detai ls  of the t r ans fo rmat ion  for  reducing the s ingular i t ies  a r e  given in Appendix 
C). After  e l emen ta ry  t r ans fo rma t ions ,  the original  sys tem of equations is then wri t ten for  numer ica l  solu-  
t ion as 

nL 

eeff(qo) = ,i e ('1.} R (qo) [ j" [SeffO1)[1 ('1) --  ~eff(']o)] /('1 (~o, '1)dq 
o 

I 

o 

~l L 

Seff(~ o) = ~ (.~.o) R {~o) { j" [[.~ (']) Serf(B) --  eeffOl = 0)] Ka (~o, ~1) drl 
o 

@ 8~ff(q - :  O)qO(~o, fx ) ] . .  (38) 

The calculat ions were  pe r fo rmed  by simple numer ica l  i te ra t ion .  Integrat ion was accomplished by 
means  of the Simpson or  Weddle rule;  the range f rom 0 to ~L was divided into 240 equal par t s  and the range 
f rom 0 to I into 120 pa r t s .  

The calculational  scheme was the following: fo r  eeff(V ) =- eeff (~) - 1, a table of values fo r  the functions 
ee(~ (V~)- e~r~ 07) was constructed (initial approximation);  the resul tant  set e ~ f  O?) was substituted in Eq,  (33) 
a n o  a~ cons truc ted  for  the  a m c t i o n s  41 f ( 01 = and then the new v a l u e s  of the  ctions 

o (i) (7) and ~ (~) were  substituted in Eq.  (33) e tc .  The i tera t ion p rocess  was stopped when the values of 
eeff( ~ = 0) agreed  to  the fourth significant digit in success ive  approximat ions .  It must  be pointed out that 
the number  of i t e ra t ions  inc reased  f rom 2-3 for  e = 0.9 to 10-15 for  e = 0.5 and that the re  was a tendency 
toward osci l lat ion in the la t te r  case .  However ,  the problem of instabili ty in the computational p rocedure  
did not a r i s e  fo r  all p a r a m e t e r  values assumed.  

Calculated values  of the effect ive emi ssivi ty eel f (~) of the bottom of the cavity a re  given in Table  1 
fo r  var ious  p a r a m e t e r s  T(~) ~ T(0) and ~.  

The cavity is i so thermal  fo r  a = 0. F o r  this  pa r t i cu la r  case ,  the data obtained can be compared with 
prev ious  r e su l t s  [1] which a r e  given in the same table .  As follows f rom the table ,  the di f ference in 
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n u m e r i c a l  va lues  is  O. 0001-0.  0002 and is  apparent ly,  explained by the fac t  that  the  a lgor i thm used  in th is  
p a p e r ,  in con t r a s t  to  that  in [1], t akes  into account  the  weak s ingular i ty  of the  ke rne l  of the  in tegra l  equa -  
t i ons .  

Data  for  eeff(~) i s  not given h e r e  fo r  cav i t i e s  with ~/L > 8 s ince  it has  been  es tab l i shed  that  the  effect  
of an i n c r e a s e  to  a cavi ty  depth g r e a t e r  than 8 y i e lds  so  sl ight  an i m p r o v e m e n t  of the  model  of a b lack  body 
that  one can u se  the tabula ted  data  in p r a c t i c e  for  ~L > 8. It mus t  be  pointed cut that  although the ca lcu la ted  
data  was  obtained fo r  X = 0 .65/~m,  it can be  used  fo r  p y r o m e t r i c  m e a s u r e m e n t s  at  any rad ia t ion  wavelength  
0 , , ) .  Then the  data p r e sen t ed  should be  n o r m a l i z e d  to  a new t e m p e r a t u r e  T,(0)  ca lcu la ted  f r o m  the e x p r e s -  
sion T, (0)  = 0 .65T!0) /~. , ,  ~ 

The ca lcu la t ions  given h e r e  w e r e  c a r r i e d  out  fo r  d i f fuse ly  emi t t ing  and re f l ec t ing  s u r f a c e s .  Af te r  
ins ignif icant  modi f ica t ions  (see [3,4] ), howeve r ,  th is  a lgor i thm can be  appl ied to bod ies  having d i f fu se -  
s p e c u l a r  r e f l ec t ion .  

whe re  

A P P E N D I C E S  A ,  B ,  A N D  C 

O"-M d1]j / = 1(1 (110, 1]) d1]; 
A. d(p (1]0, q)  : - -  0 ,5  01]i (:311i . ni =no 

'qj=rl 

[ (1]--1]~177 } " 
K~(1]o, 1])= 0 , 5  i - [ n - 1 ] o l  [(1]_1]o):_=4]~ 

d~ (~o, \ 
~j=0  

2 ( 1 - n ~ - -  ~o ~) 1] 
ga(~o, n) = [(1+112 i_~f. 4~]3/2 ; Ku(qo, ~ ) : K 8 ( ~  1]o)~; 

M - 0 ,5  [ ( n ~ - -  @~" ~-  ~, -~ ~ ? - -  ~ [ (1]~--  1]j) ~ ~- ~ , - §  ~:.?" - -  4 ~  ~jl ] /~j;  

B .  f l  (rl) = Eo,~ (1])/Eo,~ (1]o); f~ (no) = Eo,~, (0)/Ee,>. 01o); 
h (n) = Eo,~ (1])/Eo,~ (0); 

Eo.~ (1]) -- Q exp [-- co/(~T (n))]; T (n) = T  (0) [1--~(1]/1]L)~]; 

nL 'ilL 

C. .[ fl (n) eeff(q) K~ (1]o, 1]) d1] = ~ ill (1]) 8effD1) -- eeff(qo)] 
0 0 

n L 

X KI(~ o, 1]) d1] @ ~ff(no)~f Kl(%, 1])dq; 
o 

1 1 

.[ eeff(~) K2 (1]o, ~1 d~ = .I [seff(~) - -  eeff( ~ = 1)] K 2 (11o, ~) d~ 
o 0 

l 

4- eeff(~ = 1) .! K~ (qqo, ~) d~; 
o 

~1 L ~1 L 

.f eeff(1]) f3 (1]) K8 (~o 1]) d1] = t' [eeff(1])/r (~1) - -  eeff(1] = 0)] 
o b 

~qL rlL 

• S K.~ (~o, n) an + ~ff(1] = o) .I K~ (~.o, 1]) d1], 
0 0 

11L 

.t" K1 (n0, n) d1] = ~ (11o, F1) 
o 

= 1 - -  qD (no, F~) --'q~ [(1]L - -  1]o), F;] = 1 - -  0,5 - -  ~ ui=n. 
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oM) =, o,5{ +2 
- -  0 , 5  - -  Oq~ ]lli=llL--rte ( ) ]2  - -  4)'/2 

' l j  =0 
~ = ~ j  =1 

( q L -  'qo )~ ~- 2 [ 
[ (qL-  ~1o) ~ -~- 4] ./2 ~IL i ;  

t K~ (no, ~) d~ = ~o (11o, F~) = --  0,5 ~ .~=~. 
. yj=y 

"qL 

f /<3(~0, ~0dq = 1--~(~0, F~)= ! - -0 ,5  
~j 

0 

= 0 , 5 1 1 +  [01~ § ~ ~- 1) ~ - -  4~] '/2 

I]0 �9 0,5 01~+ 4) '/'~ 

O~j ~., 

"qi~'ilL 
~lj =0  

1. 

E, R~ 

I 
E 
F1, t;" 2 , FT2, 
dF 
~ , ~  

K 
f 
Ot 

C l , C2: 
X 
M 

N O T A T I O N  

a r e  the radiat ion and ref lec t ion powers  of cavity mater ia l ;  
is the br ightness ;  
is the sur face  density of semispher ica l  radia t ion;  
a re  the la tera l  cyl indrical  sur face ,  bottom surface  and ficti t ious surface;  
is the sur face  element;  
a re  the d imensionless  coordinates;  
is the angular  coefficient;  
is the kernel  of equation; 
is the t e m p e r a t u r e  hmction; 
i s the nonisothermity;  
a r e  the radiat ion constants of the Planck law; 
is the radiat ion wavelength; 
is the angular  coefficient  between two c i r c l e s .  

S u b s c r i p t s  

eft  
c 
7~ 
a 

0 
L 
i, 2, 3, 
(n) 

is the effective;  
is the proper ;  
is t h e  radiat ion wavelength; 
is the e l ementa ry  zone; 
is the fixed coordinate  or  blackbody radiation;  
is the depth of cavity; 
a r e  the numbers  of kerne l s  and t e m p e r a t u r e  functions; 
is the number  of approximat ions  (iterations); 
is  the new value of pa rame te r ;  
a r e  the upper  and lower  c i r c l e s ,  r espec t ive ly .  

2. 
3. 
4. 

5. 

6 ,  

7. 
8. 
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