ANALYSIS OF RADIATIVE HEAT TRANSFER IN NONISOTHERMAL
CAVITIES '

8. P. Rusin . UDC 536.3

A simple numerical method is propdsed for the calculation of radiative heat transfer in diffuse
nonisothermal cavities. Numerical results are given for a parabolic temperature distribution
along the length of a cylindrical cavity. -

In determining the temperature of solids by means of radiation, it is necessary in many cases to use
an open artificial cavity bounded by the surface of a circular cylinder and by a flat bottom. In practice,
such a cavity has some kind of nonisothermality. However, even in the most basic work on the theoretical
investigation of the radiation characteristics of such cavities [1], it is assumed the cavity walls are at a
constant temperature. An attempt is made here based on integral equations [2] to obtain a general expres-
sion suitable for numerical computer calculation of the distribution of the effective monochromatic emittance
Eaff overthe surface of a cavity for arbitrary nonisothermality of the walls.

This study is an extension of previous work [3, 4].

It is assumed the surface of the cavity radiates and reflects diffusely and the polarization of the radi-
ated energy is suppressed in the process of multiple reflection. The temperature of the bottom of the
cavity is constant at all points and the temperature field of the lateral surface is axisymmetric. The mono~
chromatic emmissivity of the material from which the cavity is made is independent of temperature. The
radiation field is stationary.

As is well known (for example, see [5]), pyrometer radiation readings are proportional to the effec-
tive brightness Igpof the sighting point in the sighting direction. In turn, the effective brightness is made
up of the brightness of the intrinsic radiation, Ii’ and of the reflected radiation, i.e., is determined both
by the infrinsic radiation and by the entire family of rays which are incident on the sighting area and which
are reflected in the sighting direction (for brevity, the subscript ) for the wave length of the radiation is
omitted here and in the following).

Since, under our assumptions, the surface of the cavity emits and reflects diffusely, it is convenient
to use not the brightness I but a quantity proportional to it — the surface density of hemispheric radiation
E. In setting up the equations, all geometric characteristics are normalized to the radius of the bottom
of the cavity.

The basic equations describe the thermal balance for an arbitrarily selected elementary area dF.
The elementary strip of area dF, () with the coordinate 5 (the origin of the coordinate system is at the
center of the bottom of the cavity) radiates E £f ) dF 4 @) in all directions. The amount of radiated energy
incident on the elementary area dF @) with tﬁe coordinate 7, is proportional to the angular coefficient
do @, n¢) under which the elementary strip "sees” the elementary area dF (1y) or, taking reversibility info
account, Eeff(n) do (., dF )= E  pp(n)de (g, n)dF (ny) . Thenthe amount of energy reflected by the elemen-
tary area dF(ng) is R@ g E ¢et)do tro,m)dF o) . Inclusion of the contribution from all elementary strips of
the lateral surface of the cavity is accomplished by integration over the range from 0 to 7y, (y is the dimen-
sionless depth of the cavity). Similarly, the radiation incident from the bottom surface and reflected by the

1 .
element dF @) is R{n,) j Eee¢)dgtng, £)dF t7), where the angular coefficient do 0, ¢) is considered with
0
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TABLE 1. Dependence of eeff 3, &) on the Parameters ¢, o, T iy,
=8, A = 0.65 um)

§

&, 2 T, °K

0 0,2 0,4 9,6 o8 0,9 0,95 9,97 1,0

1 1000 | 0,9275 .0,9280!0,9298/0,9327|0,9370/0,9397|0,9414|0,9421| 0,9436
1| 3000 | 0,9635 |0,9638/0,9645]0,9657/0,9674/0,9685/0,9691/0,9694 0,9700

— 10,9880 ]0,9880]0,9881]0,9882/0,98830,9884/0,9884/0,9884] 0,9885
0,9880* 0,9887*

0,5

0,1 | 1000 | 0,9479 |0,9484(0,9498(0,9522/0,9556/0,9577,0,959010,9595| 0,9606
0,1 | 2000 | 0.9668 |0.9670/0.9678|0,9691]0.9710/0.9722|0,97290.9732| 09738
0,61 0,1 | 3000 | 0,9742 |0,9744]0.9750(0,9759/0,9772i0.9781)0,9786|0,9788} 0,9792
0 — 10,9918 (0,99180,9918]0,9919/0,9920/0.9920/0,9920/0, 9920/ 0. 9921
0,3 | 1000 | 0,9280 |0,9288(0,9313/0,9355/0,9416|0,9456/0,94780, 9488| 0,9506
0,3 | 3000 | 0,9627 |0,9631]0,96420,9660/0,9686i0,9703(0.9712(0,9717| 0,9724
0,7 0,1 | 1000 | 0,9637 10,9640/0.9651/0,9669]0,5694:0.9711(0,9720/0,9724 0.9731
0,1 | 2000 | 0,9770 |0.9772{0.9778|0.9788/0.9802(0.98110,9816/0,9818/0,9822
0,1 | 3000 | 0.9822 |0,9824l0/982810,9835/0.9845/0,9851|0,9854/0,9857| 0,9859
0 — 10,9945 {0,9945/0.9945(0 09450, 9946/0,9946(0,9946 0,9946{ 0, 9947
3| 1000 | 0,9414 |0,9421l0,9442]0,947710,9520(0,9562(0,9581(0,9589) 0,9603
3| 2000 | 0,9611 |0.9615/0.9628|0,9649/0,9679l0.96990,9710,0.9714| 0,9719
3] 3000 | 0.9699 10970210 97110.9726|0,9748l0,9762/0,977010.9773| 0,9779
1 | 1000 | 0,9706 [0,9709(0.9718|0.9733(0,9755/0.9768(0,9776/0,9779] 0,9785
1 | 2000 | 0,9814 |0.9816/0,082110,9829|0,9841/0.9848/0,9853/0,9854| 0,9856
1| 3000 { 0,9857 [0,9858!0.9861|0,9867|0,9875/0,983110,9884]0,0885( 0,9887
— | 0.9956 |0,995610,9956/0.995610,9957{0,9957/0,99570,9957| 0,9957
0,9956* 1 0,0061*

0
0
0
0,75 0
) 0
0

1000 | 0,9541 |0,9547|0,9564|0,9592|0,9634/0,9661/0,9676/0,9682, 0,9693
3000 | 0,9766 |0,9768/0,9775/0,9788]0,9805/0,9416,0,9822/0,9825| 0,9830
1000 | 0,9771 |0,9774(0,9781|0,97930,9810/0,9821|0,9827|0,9829| 0,9834
2000 | 0,9856 |0,9857/0,986110,9867|0,9877/0,9883/0,9886/0,9888] 0,9889
3000 | 0,9889 [0,9890(0,9893/0,9897(0,9904|0,9908,0,9910i0,9911; 0,9913
— | 0,9965 '|0,9965/0,9966|0,9966/0,9967,0,9967 10 ,9967 0,9967 0,9967

0,8

coocooco
e e 00 T2

1000 | 0,9705 |0,9709(0,9721|0,9742/0,9773'0,9792(0,9803,0,9808| 0,9816
2000 | 0,9799 10,9802]0,9809,0,9822/0,9841j0,9852/0,9859/0,9862! 0,9866
3000 | 0,9842 |0,984410,985010,98590,98730,9881,0,9886,0,9888 0,9891
1000 | 0,9779 |0,9782/0,9790(0,980510,9826/0,9839/0,9847|0,9850! 0,9855
2000 ] 0,9855 |0,9857{0,9862(0,9870;0,9883j0,9892/0,989410,9896) 0,9899
3000 | 0,9888 [0,989¢(0,9893|0,9899(0,9908,0,9913,0,9916/0,9918} 0,9920
1000 | 0,9828 10,9830|0,98360,98470,98620,9872i0,9877,0,9879{ 0,9883
2000 | 0,9890 ]0,9891}0,989410,9901}0,9909]0,9915]0,9918|0,9919| 0,9921
3000 | 0,9916 0,9917,0,9919|0,9923(0,9930!0,9933/0,99350,9936] 0,9938
1000 | 0,9891 |0,9892/0,9896/0,9902|0,9910j0,9916/0,9919|0,9920| 0,9922
2000 | 0,9932 [0,993210,993410,9937|0,994210,9945(|0,9947,0,9947; 0,9948
3000 | 0,9%47 10,99480,9949|0,9951}0,9955(0,99570,9958/0,9958| 0,9959
— 10,9984 10,9984]0,9984]0,9984|0,9984/0,9984,0,9984|0,9984! 0,9984
0,9984* 0,9986*

e I TO MO B0 W o T e T T

0.9

OO ODOOCOOOODD

+Data from {1].

respect to dF () and the elementary ring of dimensionless radius £, Denoting the surface density of effec-
tive radiation at the point 7y by E 4¢¢(1) and setting up the thermal balance, we obtain

Lotz (o) daF (o) = E¢ () dF (9) =+ R (n,) | dF (ny) }L Eegt(n)
b 1
X do (g, ) + dF (1) 5 ett(8) 4o (n, B)] i
or in dimensionless form after elementary transformatlons
&g(1o) = & () + R (n) | :(L &5 (M) F1 () Ky (no, M) dn
+ fang) j Eyg¢(8) Ko (B ] - | @

Similarly, for an elementary area on the bottom surface we have

140



'3

&1 Co) = 8 E) -+ R (&) | eogen) fy () K5 Gy, m) . ®)
\ :

Values of ¢, R, and K and the temperature functions f are given. The effective emissivities egfp are un-
known functions. Thus Eqs. (2) and (3) form a system of two Fredholm integral equations of the second
kind in two unknowns. This equation system is valid for monochromatic radiation and also for the case

where the emitting sirface is "grey,”

Since the purpose of the present work is simulation of a black body by a nonisothermal cavity, a
rather deep cavity was considered, the dimensionless length of which was ny = 8. It was assumed that the
temperature fell in the direction of the opening in accordance with the quadratic parabola T @) = T(0) (1-o
i /“nL)Z) . Values of the monochromatic emissivity, of the nonisothermality coefficient o = (T (0)—T¢1p)) /T
(0), and of the temperature of the bottom of the cavity are given in Table 1 together with the calculated
data. Formulas for K are given in Appendix A. The temperature functions f were obtained within thelimits
of applicability of the Wien formula and are given in Appendix B. Since the effective wavelength of optical
pyrometers is usually 0.65 ym, the calculations assumed » = 0.65 pm and ¢; = 14380 pm-deg.

The kernels K of Eqs. (2) and (3) have a weak singularity wheng—~1, n —0, % —1 and when 7, —0,
¢ —1. Unfortunately, this fact was not mentioned in [1], which led to a failure in the numerical solution
[6] of such a system of equations in accordance with the scheme given in [1]. To weaken the singularities
here, a method was used [7] where the integrand is written in the form of a sum of two functions with one
of them containing the "entire" singularity but being exactly integrable and the other without a singularity
calculable to any given accuracy by one of the formulas for approximate quadratures. A conversion of the
integrals in Eqs. (2) and (3) was carried out in accordance with this. It was found that it was more con-
venient not to determine the original integrals directly but to calculate their exact values on the basis of
the closure principle and reversibility for the angular coefficients . The appropriate formulas were ob~
tained by differentiation of the expression M, where M is the angular coefficient between two circles of
equal radius located in parallel planes and having a common central normal [8] (the formulas for the an-
gular coefficients and the details of the transformation for reducing the singularities are given in Appendix
C). After elementary transformations, the original system of equations is then written for numerical solu-
tion as

L
s'eff(‘]o) = :8 (Mg} -~ R (ng) I ‘ [Eeff(ﬂ) from— Seff(no)] Ky (Mg, M) dn
0

T I ) | | [eogel®) — gggll= D] Ky, 51+ gpE = 1)
0

<@t P} [1— ROw e, £, 22)

'I]L

i) = (5 R { | [Fs (M &) — gegn = 0)] Ky (G, W

G

L . © 1
S eagp(n = 0) @ (, FI)JV. a)

The calculations were performed by simple numerical iteration. Integration was accomplished by
means of the Simpson or Weddle rule; the range from 0 to 7y, was divided into 240 equal parts and the range
from 0 to 1 into 120 parts.

9 The calculational scheme was the following: for eorrll) = Eefp (¢) = 1, a table of values for the functions
Eéf (ny) = eeff (M) was constructed (initial approximation); the resultant set gg}f ) was substituted in Eq, (32)
andf a table was constructed for the functions egf)f (&) = agff {¢) and then the new values of the functions gg%f
) and ng)f {¢) were substituted in Eq. (3a) etc. The iteration process was stopped when the values of
egfflt = 0) agreed to the fourth significant digit in successive approximations. It must be pointed out that
the number of iterations increased from 2-3 for £ = 0.9 to 10-15 for ¢ = 0.5 and that there was a tendency
toward oscillation in the latter case. However, the problem of instability in the computational procedure

did not arise for all parameter values assumed,

Calculated values of the effective emissivity egpp (£) of the bottom of the cavity are given in Table 1
for various parameters T (¢) = T (0) and o,

The cavity is isothermal for o = 0. For this particular case, the data obtained can be compared with
previous results [1] which are given in the same table. As follows from the table, the difference in
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numerical values is 8.0001-0.0002 and is apparently. explained by the fact that the algorithm used in this
paper, in contrast to that in [1], takes into account the weak singularity of the kernel of the integral equa~-
tions.

Data for eeﬂ(g) is not given here for cavities with ny > 8 since it has been established that the effect
of an increase to a cavity depth greater than 8 yields so slight an improvement of the model of a black body
that one can use the tabulated data in practice for n; > 8. It must be pointed out that although the calculated
data was obtained for A = 0.65 um, it can be used for pyrometric measurements at any radiation wavelength
(\x). Thenthe data presented should be normalized to a new temperature T *(0) calculated from the expres-
sion T,(0) = 0.65T(_0)/>\*, K.

The calculations given here were carried out for diffusely emitting and reflecting surfaces. After
insignificant modifications (see [3,4]), however, this algorithm can be applied to bodies having diffuse-
specular reflection.

APPENDICES A, B, AND C

M
A dpin, m=—05 ( dn,-) — Ky (1, )
O, On; =M
TI ="
§=3%;=!1
n— nu)z +6
K, (n, M =105 fl—ln~n| — };
1 \ "l —mer-47

1 oM
dy (&, 1) = — 05 (— ———dm) = Ky (& ) dn;
0 E; 98; O, ;=" e
=
s
§j=:o

2(1- - —E)n . .
K3 &g m) = [(1+ e+ 53)2_04&2)]3/2 3 Ky, 8 =K )8

M=05[m—np 8+ 8—m—np+ 85 — g
B. fi(m) = Eg ()/Eo.3 (o) F2(Me) = Eo.2.(0)/Ee.2. ()
fs () = Eo,a ()/Eu,2.(0);
Eo () =cyexp [— /AT ()]s T (m) =T (0) [l—o:(m/n, )]s

"'IL 'nL
C. s. f1 () &egen) Ky (g, m)dn = 5‘ [f1 () g ) — eeff(no):[

0 0

"L

X Ky (g ) dn +e,6n0)" | K (5, )y
. 0
1 1
[ e ® Ky (g B dE = [ [e5(8) — 28 = D] Koy D8
0 1]
1
+ & =1 [ Ky (ny, §dE;
nL ‘ ! Tl{_
[ e fs () Ko Gy W= | [ /a(0) —eoggn = 0)]
0 ﬂL o "
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0 0
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3

s K1 (7]0, 7]) d*l = q’('lo: Fl)
[

. , oM
=1—¢n, Fo)— [(nL — o) Fg] =1-05 (_ —@.ﬂ— )"i=n"
©ny=0
g=t;=1
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—05 (— EM—) ~1_0,5{ o 2[
o, Jm=ne—me -4
n, =0 ’
i==&;=1 '
(']L”“ M) + 2 o ‘i .
[(.,]L S 4J1/2 M [
A (iM_) ol M2 .
S K,y B dE =0, Fy)=—0,5\ on, ne=m, = L~ )7 - ]OJ ;
b g‘: =& ;=
‘I]L
[ ®oo man 1w, Fy=1 03 (S
. . Ej S Sj==ce
0 &=
Ny==11,
g v
—05l1 - LT }
=0 T T T — a} :
NOTATION
£, R, are the radiation and reflection powers of cavity material;
I is the brightness;
B is the surface density of semispherical radiation;
¥, Fy, Fly, are the lateral cylindrical surface, bottom surface and fictitious surface;
dF is the surface element;
M, & are the dimensionless coordinates;
@ is the angular coefficient;
K is the kernel of equation;
f is the temperature function;
o is the nonisothermity;
€y, Cy, are the radiation constants of the Planck law;
A is the radiation wavelength;
M is the angular coefficient between two circles.
Subscripts
eff is the effective;
c is the proper;
A is the radiation wavelength;
a is the elementary zone;
0 is the fixed coordinate or blackbody radiation;
L is the depth of cavity;
1, 2, 3, are the numbers of kernels and temperature functions;
n) is the number of approximations (iterations);
* ig the new value of parameter;
i, i, are the upper and lower circles, respectively.
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